The Foundation of Probability Theory

James H. Steiger

Probabilistic Experiment

A *Probabilistic Experiment* is a situation in which

More than one thing can happen

The outcome is potentially uncertain

The Sample Space Ω of a probabilistic experiment E is the set of all possible outcomes of E.

Examples: E_1 = Toss a coin, observe whether it is a Head (H) or a Tail (T) $\Omega_1 = \{H, T\}$

Examples: E_2 = Toss a fair die, observe the outcome. Ω_2 = {1, 2, 3, 4, 5, 6} E_3 = Toss a fair coin 5 times, observe the number of heads.

 $\Omega_3 = ? (C.P.)$

Examples:

- E_4 = Toss a fair coin 5 times, observe the sequence of heads and tails.
- $\Omega_4 = \{$ HHHHH, HHHHT, HHHTH, HHHTT, HHTHH, HHTHH, HHTHH, HHTTH, HHTTH, HHTTH, HHTTH, HHTTH, \dots

Even with very simple situations, the Sample Space can be quite large. Note that more than one *Probabilistic Experiment* may be defined on the same physical process. Elementary Events vs. Compound Events

 The *Elementary Events* in a Sample Space are the finest possible partition of the sample space.
 Compound Events are the union of elementary events.

Elementary Events vs. Compound Events

*Example:*Toss a fair die. (E2)
The *elementary events* are 1,2,3,4,5 and 6.
The events "Even" = {2,4,6}, "Odd" = {1,3,5} are examples of *compound events*.

The Axioms of Relative Frequency

Event	Relative Freq.
6	1/6
15 - K	1/6
4	1/6
3	1/6
2	1/6
1 2000	1/6
(>3)	3/6
Even	3/6
Odd	3/6
Even U (>3)	4/6
Even U Odd	15000000000000000000000000000000000000

Axioms of Relative Frequency

For any events in Ω , the following facts about the relative frequencies can be established.

(1) $0 \le r(A) \le 1$ (2) $r(\Omega) = 1$ (3) If $A \cap B = \emptyset$, then $r(A \cup B) = r(A) + r(B)$

Axioms of Discrete Probability

Given a probabilistic experiment E with sample space Ω and events A_i , The probabilities $Pr(A_i)$ of the events are numbers satisfying the following 3 axioms:

 $\Pr(A_i) \geq 0$

 $\Pr(\Omega) = 1$

If $A \cup B = \emptyset$, then $Pr(A \cup B) = Pr(A) + Pr(B)$ 3 Fundamental Theorems of Probability

Theorem 1. $Pr(\emptyset) = 0$ **#** Proof. For all events A, $A \cap \emptyset = \emptyset$.

So the 3rd axiom applies, and we have $Pr(A \cup \emptyset) = Pr(A) + Pr(\emptyset) = Pr(A)$

But, for any set *A*, $A \cup \emptyset = A$, so by subtraction, we have the result.

3 Fundamental Theorems of Probability

Theorem 2. $Pr(A) = 1 - Pr(\overline{A})$ **#** Proof. For all events A, . $A \cap \overline{A} = \emptyset$, so $Pr(A \cup \overline{A}) = Pr(A) + Pr(\overline{A})$

But, for any set A, $A \cup \overline{A} = \Omega$, so $Pr(\Omega) = 1 = Pr(A) + Pr(\overline{A})$

The result then follows by subtraction.

3 Fundamental Theorems of Probability

Theorem 3. $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$ **#** Proof. Someone from the class will prove this well known result.